Refine your search:     
Report No.
 - 
Search Results: Records 1-20 displayed on this page of 168

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Estimating the corrosion rate of stainless steel R-SUS304ULC in nitric acid media under concentrating operation

Irisawa, Eriko; Kato, Chiaki

Journal of Nuclear Materials, 591, p.154914_1 - 154914_10, 2024/04

 Times Cited Count:0

The amount of corrosion of austenitic stainless-steel R-SUS304ULC was evaluated considering the changes in solution composition and boiling during actual concentration operations. Austenitic stainless-steel R-SUS304ULC is the structural material of the highly radioactive liquid waste concentrator in Japanese spent fuel reprocessing plant, which treats highly corrosive nitric acid solutions during enrichment operations. The study results show that it is necessary to focus on nitric acid concentrations, oxidizing metal ion concentrations, and decompression boiling as factors that accelerate the corrosion rate of stainless steel because of cathodic reaction activation.

Journal Articles

Criticality safety evaluation of high active liquid waste during the evaporation to dryness process at Tokai Reprocessing Plant

Miura, Takatomo; Kudo, Atsunari; Koyama, Daisuke; Obu, Tomoyuki; Samoto, Hirotaka

Proceedings of 12th International Conference on Nuclear Criticality Safety (ICNC2023) (Internet), 10 Pages, 2023/10

Tokai Reprocessing Plant (TRP) had reprocessed 1,140 tons of spent fuel discharged from commercial reactors (BWR, PWR) and Advanced Thermal Reactor "Fugen" from 1977 to 2007. TRP had entered decommissioning stage in 2018. In order to reduce the risk of High Active Liquid Waste (HALW) held at the facility, the vitrification of HALW is given top priority. HALW generated from reprocessing of spent fuel contains not only fission products (FPs) but also trace amounts of uranium (U) and plutonium (Pu) within the liquid and insoluble residues (sludge). Under normal conditions, concentrations of U and Pu in HALW are very low so that it can not reach criticality. Since FPs with high neutron absorption effect coexists in HALW, even if the cooling function is lost due to serious accident and HALW evaporates to dryness, it is considered that criticality would not been reached. In order to confirm this estimation quantitatively, criticality safety evaluations were carried out for the increase of U and Pu concentrations by evaporation of HALW to the point of dryness. In this evaluation, infinite multiplication factors were calculated for each of solution system and sludge system of HALW with respect to the concentration change through evaporation to dryness. It is confirmed it could not reach criticality. The abundance ratios of U, Pu and FPs were set conservatively based on analytical data and ORIGEN calculation results. Multiplation factors for two-layer infinite slab model of solution and sludge systems of HALW were also calculated, and it was confirmed it could not reached criticality. In conclusion, the result was gaind that there could be no criticality even in the process through evaporation to dryness of HALW in TRP.

JAEA Reports

Development of analytical approach of source term for accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2023-001, 26 Pages, 2023/05

JAEA-Research-2023-001.pdf:1.61MB

An accident of evaporation to dryness by boiling of high-level radioactive liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into the atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an analytical approach has been developed using computer simulation programs to assess the radioactive source term from those facilities. The proposed approach consists analyses with three computer programs. At first, the simulation of boiling behavior in the HLLW tank is conducted with SHAWED code. Next step, the thermal-hydraulic behavior in the facility building is simulated with MELCOR code based on the results at the first step simulation such as flowed out mixed steam flow rate, temperature and volatilized Ru from the tank. The final analysis step is carried out for estimating amount of released radioactive materials with SCHERN computer code which simulates chemical behaviors of nitric acid, nitrogen oxide and Ru based on the condition also simulated MELCOR. Series of sample simulations of the accident at a hypothetical typical facility are presented with the data transfer between those codes in this report.

JAEA Reports

Consideration on roles and relationship between observations/measurements and model predictions for environmental consequence assessments for nuclear facilities

Togawa, Orihiko; Okura, Takehisa; Kimura, Masanori

JAEA-Review 2022-049, 76 Pages, 2023/01

JAEA-Review-2022-049.pdf:3.74MB

Before construction and after operation of nuclear facilities, environmental consequence assessments are conducted for normal operation and an emergency. These assessments mainly aim at confirming safety for the public around the facilities and producing relief for them. Environmental consequence assessments are carried out using observations/ measurements by environmental monitoring and/or model predictions by calculation models, sometimes using either of which and at other times using both them, according to the situations and necessities. First, this report investigates methods, roles, merits/demerits and relationship between observations/measurements and model predictions which are used for environmental consequence assessments of nuclear facilities, especially holding up a spent nuclear fuel reprocessing plant at Rokkasho, Aomori as an example. Next, it explains representative examples of utilization of data on observations/measurements and results on model predictions, and considers points of attention at using them. Finally, the report describes future direction, for example, improvements of observations/measurements and model predictions, and fusion of both them.

JAEA Reports

Development of simulation program; SHAWED for analysis of accident of evaporation to dryness by boiling of reprocessed high level liquid waste in tank

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2022-011, 37 Pages, 2022/12

JAEA-Research-2022-011.pdf:2.88MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents at a fuel reprocessing plant. Two major mechanisms are expected for fission products (FPs) transfer from liquid to vapor phase. One is non-volatiles FPs transfer in the form of mists to the vapor phase in the tank, the other is volatilization of such as Ruthenium. These FPs transferred to the vapor phase in the tank could be released with water and nitric-acid mixed steam and NO$$_{2}$$ gas flow to the environment. NO$$_{2}$$ is generated from denitration of nitrate fission products during dry out phase. These phenomena occurred in this accident originate from the liquid waste boiling in the tank. It is essential for the risk assessment of this accident to simulate thermo-hydraulic and chemical behaviors in the waste tank quantitatively with a versatile computer program. The SHAWED ($$underline{rm S}$$imulation of $$underline{rm H}$$igh-level radio$$underline{rm A}$$ctive $$underline{rm W}$$aste $$underline{rm E}$$vaporation and $$underline{rm D}$$ryness) has been developed to realize these requirements. In this report, detailed description of major analytical models is explained based on the features of this accident, and some simulation examples are also described for the use in an actual risk assessment.

Journal Articles

Overview of event progression of evaporation to dryness caused by boiling of high-level liquid waste in Reprocessing Facilities

Yamaguchi, Akinori*; Yokotsuka, Muneyuki*; Furuta, Masayo*; Kubota, Kazuo*; Fujine, Sachio*; Mori, Kenji*; Yoshida, Naoki; Amano, Yuki; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi (Internet), 21(4), p.173 - 182, 2022/09

Risk information obtained from probabilistic risk assessment (PRA) can be used to evaluate the effectiveness of measures against severe accidents in nuclear facilities. The PRA methods used for reprocessing facilities are considered immature compared to those for nuclear power plants, and to make the methods mature, reducing the uncertainty of accident scenarios becomes crucial. In this paper, we summarized the results of literature survey on the event progression of evaporation to dryness caused by boiling of high-level liquid waste (HLLW) which is a severe accident in reprocessing facilities and migration behavior of associated radioactive materials. Since one of the important characteristics of Ru is its tendency to form volatile compounds over the course of the event progression, the migration behavior of Ru is categorized into four stages based on temperature. Although no Ru has been released in the waste in the high temperature region, other volatile elements such as Cs could be released. Sufficient experimental data, however, have not been obtained yet. It is, therefore, necessary to further clarify the migration behavior of radioactive materials that predominantly depends on temperature in this region.

JAEA Reports

Analysis of risk reduction effect of supposed steam condenser implementation as accident measure for accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-013, 20 Pages, 2022/01

JAEA-Research-2021-013.pdf:2.35MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. An idea has been proposed to implement a steam condenser as an accident countermeasure. This measure is expected to prevent nitric acid steam diffusing in facility building and to increase gaseous Ru trapping ratio into condensed water. A simulation study has been carried out with a hypothetical typical facility building to analyze the efficiency of steam condenser. In this study, SCHERN computer code simulates chemical behaviors of Ru in nitrogen oxide, nitric acid and water mixed vapor based on the conditions obtained from simulation with thermal-hydraulic computer code MELCOR. The effectiveness of steam condenser has been analyzed quantitively in preventing mixed vapor diffusion and gaseous Ru trapping effect. Some issues to be solved in analytical model has been also clarified in this study.

JAEA Reports

Analysis of behavior of Ru with nitrogen oxide chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Research 2021-005, 25 Pages, 2021/08

JAEA-Research-2021-005.pdf:2.91MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. Accurate quantitative estimation of released Ru is one of the important issues for risk assessment of those facilities. To resolve this issue, an empirical correlation equation of Ru mass transfer coefficient across the vapor-liquid surface, which can be useful for quantitative simulation of Ru mitigating behavior, has been obtained from data analyses of small-scale experiments conducted to clarify gaseous Ru migrating behavior under steam-condensing condition. A simulation study has been also carried out with a hypothetical typical facility building successfully to demonstrate the feasibility of quantitative estimation of amount of Ru migrating in the facility using the obtained correlation equation implemented in SCHERN computer code which simulates chemical behaviors of nitrogen oxide based on the condition also simulated thermal-hydraulic computer code.

JAEA Reports

SCHERN-V2: Technical guide of computer program for chemical behavior in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Yoshida, Kazuo; Tamaki, Hitoshi; Hiyama, Mina*

JAEA-Data/Code 2021-008, 35 Pages, 2021/08

JAEA-Data-Code-2021-008.pdf:3.68MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NO$$_{rm x}$$) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NOx affects to the migration behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NO$$_{rm x}$$ with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. The analysis program, SCHERN has been under developed to simulate chemical behavior including Ru coupled with the thermo-hydraulic condition in the flow paths in the facility building. This technical guide for SCHERN-V2 presents the overview of covered accident, analytical models including newly developed models, differential equations for numerical solution, and user instructions.

Journal Articles

Thermal-hydraulics to risk assessment; Roles of thermal-hydraulics simulation to risk assessment

Maruyama, Yu; Yoshida, Kazuo

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(7), p.517 - 522, 2021/07

no abstracts in English

Journal Articles

Iodine-129 in the Tokai Reprocessing Plant and the environment

Nakano, Masanao

Hoken Butsuri (Internet), 56(1), p.17 - 25, 2021/03

The Tokai Reprocessing Plant is the first reprocessing plant in Japan which started hot test in 1977, and had reprocessed 1140 tons of spent nuclear fuel by May 2007. The gaseous and liquid radioactive wastes has been discharged to the environment. Since iodine-129 ($$^{129}$$I) is one of the most important nuclides for environmental impact assessment. Therefore, $$^{129}$$I in the exhaust and effluent has been controlled, and a precise analysis method of $$^{129}$$I in the environmental samples was developed, and the concentration of 129I in the environment was investigated. This report presents an overview of these activities. Not limited to $$^{129}$$I on reprocessing facilities, it is essential for nuclear operators to reduce the amount released to the environment in the spirit of ALARA, and to continuously develop the further upgrading environmental monitoring methods and evaluation methods in order to foster a sense of safety and security among residents living in the vicinity of the facilities.

Journal Articles

Restraint effect of coexisting nitrite ion in simulated high level liquid waste on releasing volatile ruthenium under boiling condition

Yoshida, Ryoichiro; Amano, Yuki; Yoshida, Naoki; Abe, Hitoshi

Journal of Nuclear Science and Technology, 58(2), p.145 - 150, 2021/02

 Times Cited Count:1 Percentile:12.16(Nuclear Science & Technology)

In the "evaporation and dryness due to the loss of cooling functions" which is one of the severe accidents at reprocessing plants in Japan, ruthenium (Ru) is possible to be released much more than other elements to the environment. This cause is considered that the volatile Ru compound can be released from high level liquid waste (HLLW) as gaseous compound in adding to the release by entrainment. It was expected that the release of the volatile Ru compound from the HLLW may be able to be restrained by coexisting nitrite ion because of its reduction power. To confirm the effect of nitrite ion on the release behavior of the volatile Ru compound, four experiments of heating the simulated HLLW (SHLLW) with setting the concentration of nitrite ion in the SHLLW as a parameter ware carried out. As a result, the release of the volatile Ru compound was seemed to be restrained by adding nitrite sodium as a source of nitrite ion under certain boiling condition. This result may contribute to improve source term analysis in the evaporation and dryness due to the loss of cooling functions.

Journal Articles

Vertical distributions of Iodine-129 and iodide in the Chukchi Sea and Bering Sea

Miwa, Kazuji; Obata, Hajime*; Suzuki, Takashi

Journal of Nuclear Science and Technology, 57(5), p.537 - 545, 2020/05

 Times Cited Count:2 Percentile:21.58(Nuclear Science & Technology)

This study investigated the vertical distribution of Iodine-129 ($$^{129}$$I) which is mainly produced by European nuclear reprocessing plants in the Chukchi Sea and Bering Sea. $$^{129}$$I was found to be distributed almost uniformly in fallout level, and an increasing in $$^{129}$$I concentration levels caused by high $$^{129}$$I water inflow from the Atlantic Ocean was not observed. Additionally, we revealed the vertical distribution of iodide, one chemical form of iodine, from the Bering Shelf area to the Chukchi Sea for the first time. The increasing tendency of iodide near sea bottom was observed.

Journal Articles

Improvement in flow-sheet of extraction chromatography for trivalent minor actinides recovery

Watanabe, So; Senzaki, Tatsuya; Shibata, Atsuhiro; Nomura, Kazunori; Takeuchi, Masayuki; Nakatani, Kiyoharu*; Matsuura, Haruaki*; Horiuchi, Yusuke*; Arai, Tsuyoshi*

Journal of Radioanalytical and Nuclear Chemistry, 322(3), p.1273 - 1277, 2019/12

 Times Cited Count:4 Percentile:31.89(Chemistry, Analytical)

Journal Articles

Modelling of intergranular corrosion using cellular automata, 1; Characteristics and corrosion rates of stainless steels in modified nuclear reprocessing solution

Yamamoto, Masahiro; Irisawa, Eriko; Igarashi, Takahiro; Komatsu, Atsushi; Kato, Chiaki; Ueno, Fumiyoshi

Proceedings of Annual Congress of the European Federation of Corrosion (EUROCORR 2019) (Internet), 5 Pages, 2019/09

Intergranular corrosion phenomena were analysed using modified reprocessing solution. The data indicated that corrosion rates increased with time at the initial stage, and these stayed at constant value. Intergranular corrosion propagated at grain boundary in the initial stage and then attacked whole grain boundary causing drop out of grains. Corrosion rates of steady state were sum of intergranular corrosion amounts and weight losses of dropped grains. Surface appearances and cross sections of corroded samples were analyzed. The results indicated that the initial stage of intergranular corrosion was characterized by the ratio of corrosion rates between grain boundary and matrix. These ratios differed from individual grain boundaries. Total corrosion rates were affected by the distribution of these ratios. These data were based on the numerical modelling of intergranular corrosion using cellular automata. And also, calculated results were compared with these analytical data.

JAEA Reports

SCHERN: Analysis program for chemical behavior of nitrogen oxide in accident of evaporation to dryness by boiling of reprocessed high level liquid waste in Fuel Reprocessing Facilities

Hiyama, Mina*; Tamaki, Hitoshi; Yoshida, Kazuo

JAEA-Data/Code 2019-006, 17 Pages, 2019/07

JAEA-Data-Code-2019-006.pdf:1.84MB

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents caused by the loss of cooling function at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides (NOx) are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that NOx affects strongly to the transport behavior of Ru at the anticipated atmosphere condition in cells and/or compartments of the facility building. Chemical reactions of NOx with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. An analysis program has been developed to simulate chemical reaction coupled with the thermo-hydraulic condition in the flow paths in the facility building.

Journal Articles

Treatment technology of highly radioactive solid waste generated by experimental tests and sample analysis in reprocessing facilities

Goto, Yuichi; Inada, Satoshi; Kuno, Takehiko; Mori, Eito*

Nihon Hozen Gakkai Dai-16-Kai Gakujutsu Koenkai Yoshishu, p.221 - 224, 2019/07

Test equipment, containers, and analytical wastes, generated by experiments using spent fuel pieces in hot cell of Operation Testing Laboratory and by analysis of highly active liquid wastes in hot analytical cell line of Tokai Reprocessing Plant, are treated as highly radioactive solid wastes. These wastes are stored in specific shielded containers called waste cask and then transport to the storage facility. The treatment of these highly radioactive solid wastes have been carried out for 40 years with upgrading waste taking out system and transportation device. As a results, automation of several procedures have been achieved utilizing conventional equipment, and work efficiency and safety have been improved.

Journal Articles

Analysis of chemical behavior of nitrogen oxide formed by thermal decomposition of FP nitrates in accident of evaporation to dryness by boiling of reprocessed high-level liquid waste

Yoshida, Kazuo; Tamaki, Hitoshi; Yoshida, Naoki; Yoshida, Ryoichiro; Amano, Yuki; Abe, Hitoshi

Nihon Genshiryoku Gakkai Wabun Rombunshi, 18(2), p.69 - 80, 2019/06

An accident of evaporation to dryness by boiling of high level liquid waste (HLLW) is postulated as one of the severe accidents at a fuel reprocessing plant. In this case, volatile radioactive materials, such as ruthenium (Ru) are released from the tanks with water and nitric-acid mixed vapor into atmosphere. In addition to this, nitrogen oxides are also released formed by the thermal decomposition of metal nitrates of fission products (FP) in HLLW. It has been observed experimentally that nitrogen oxide affects strongly to the transport behavior of Ru. Chemical reactions of nitrogen oxide with water and nitric acid are also recognized as the complex phenomena to undergo simultaneously in the vapor and liquid phases. An analysis method has been developed with coupling two types of computer codes to simulate not only thermo-hydraulic behavior but also chemical reactions in the flow paths of carrier gases. A simulation study has been also carried out with a typical facility building.

Journal Articles

Introduction and implementation of physical protection measures including trustworthiness program at Tokai Reprocessing Facilities

Nakamura, Hironobu; Kimura, Takashi; Yamazaki, Katsuyuki; Kitao, Takahiko; Tasaki, Takashi; Iida, Toru

Proceedings of International Conference on Physical Protection of Nuclear Material and Nuclear Facilities (Internet), 9 Pages, 2018/09

After the accident of Fukushima Daiichi Nuclear Power Station, to develop effective security measures based on the lesson learned from such crisis and to meet the IAEA Nuclear Security Recommendations (INFCIRC/225/Rev.5), NRA in Japan made a partial amendment of the regulations concerning the reprocessing activity in 2012. The Tokai reprocessing facility implemented all of those security measures by the end of March 2014. Those new measures help us to keep high degree of security level and contributed to our planned operations to reduce the potential risk of the plant. On the other hand, the trustworthiness program was newly introduced in 2016, based on the trustworthiness policy determined by NRA. The implementing entity of the program is JAEA for the Tokai Reprocessing Facility and is required for both the persons afford unescorted access to Category I and II, CAS/SAS, and the persons afford access to the sensitive information. Those who are involved this program will be judged before engaging the work whether they might act as insider to cause or assist radiological sabotage or unauthorized removal of nuclear material, or leak sensitive information. The program is expected as a measure against insider at reprocessing facilities, and is expected to be enforced around the autumn of 2017. As well as the establishment of security measures, the promoting nuclear security culture for all employees was a big challenge. The Tokai reprocessing facility have introduced several security culture activities, such as case study education of security events done by a small group and putting up the security culture poster and so on. This paper presents introduction and implementation with effectiveness of security measures in the Tokai reprocessing facilities and the future security measures applied to the reprocessing facilities are discussed.

Journal Articles

Demonstration of $$gamma$$-ray pipe-monitoring capabilities for real-time process monitoring safeguards applications in reprocessing facilities

Rodriguez, D.; Tanigawa, Masafumi; Nishimura, Kazuaki; Mukai, Yasunobu; Nakamura, Hironobu; Kurita, Tsutomu; Takamine, Jun; Suzuki, Satoshi*; Sekine, Megumi; Rossi, F.; et al.

Journal of Nuclear Science and Technology, 55(7), p.792 - 804, 2018/07

 Times Cited Count:0 Percentile:0.01(Nuclear Science & Technology)

Nuclear material in reprocessing facilities is safeguarded by random sample verification with additional continuous monitoring applied to solution masses and volume in important tanks to maintain continuity-of-knowledge of process operation. Measuring the unique $$gamma$$ rays of each solution as the material flows through pipes connecting all tanks and process apparatuses could potentially improve process monitoring by verifying the compositions in real time. We tested this $$gamma$$ ray pipe-monitoring method using plutonium-nitrate solution transferred between tanks at the PCDF-TRP. The $$gamma$$ rays were measured using a lanthanum-bromide detector with a list-mode data acquisition system to obtain both time and energy of $$gamma$$-ray. The analysis and results of this measurement demonstrate an ability to determine isotopic composition, process timing, flow rate, and volume of solution flowing through pipes, introducing a viable capability for process monitoring safeguards verification.

168 (Records 1-20 displayed on this page)